Identification and Organic Control of Greenhouse Diseases

Natalie P. Goldberg
Extension Plant Pathologist
New Mexico State University
Plant Disorder Vs. Plant Disease

- **Plant disorder**
 - Any abnormal growth or development in a plant

- **Plant disease**
 - Any abnormal growth or development in a plant specifically caused by an *infectious microorganism* (pathogen).
 - Fungi
 - Bacteria
 - Viruses
 - Nematodes
The Plant Disease Triangle

Virulent Pathogen

Susceptible Host

Favorable Environment
Greenhouse Environment

- More consistent environment
 - Exception – equipment failure (cooler, heater, vents, etc.)

- Environment is generally good for diseases
 - Moderate (warm) temperature
 - High humidity / moisture
 - Air movement (spread)

- Overcrowded conditions

- Rapid lush growth

- Disease outbreaks can “explode”
Managing Greenhouse Diseases

- Accurate Diagnosis
- Understanding of pathogen sources
- Understanding of pathogen biology:
 - life cycle
 - environmental requirements
 - spread.
- Develop appropriate and effective management strategies
Diagnosing Plant Diseases

- Causal agents are *small* (microscopic).
- “Field” diagnosis may not be possible:
 - Positive identification may require laboratory tests and specialized equipment.
Diagnosing Plant Disorders

- Diagnosis is a team effort.
 - Grower
 - Submitting Agent
 - Diagnostic Lab

- NMSU Plant Diagnostic Clinic:
 - http://plantclinic.nmsu.edu
 - Forms and information for submitting samples.
 - Publications, links, etc.
 - Image gallery (coming attraction!)
NMSU Plant Diagnostic Clinic

- Support lab for the National Plant Diagnostic Network.
 - Partnership between USDA, State Depts. of Ag and Land Grant Universities.
 - Overall objective: Establish a functional **national network** of existing diagnostic laboratories to rapidly and accurately **detect** and **report** pathogens, pests and weeds of national interest, whether intentionally introduced or not.
 - First Detector Training
 - Provides financial support to plant diagnostic clinics.
- Provides diagnostic services at no charge when samples are submitted through the county extension offices.
The Diagnostic Process

- An accurate diagnosis depends on:
 - Early detection of plant problem – routine examination of the plant.
 - Examination of good specimens and/or photos.
 - Obtaining accurate information.
Diagnosing Plant Problems

- **Ask questions!**
- Identify the plant species affected – genus, species, cultivar, common name.
- Observe and document the symptoms.
- Observe and document the plants’ growing environment.
- Document the environmental conditions prior to and during symptom development

* Take good, thorough notes and photos
Diagnosing Plant Problems

- Isolate and identify associated microorganisms.
- Determine if any of the associated microorganisms are likely to be responsible for the symptoms – references, host indexes, experience.
- Make recommendations.
Pathogen Sources

- “Soil”
 - Soil
 - Sand
 - Peat
 - Potting mixes
- Plant debris

- “Soil” debris
 - Used pots or flats
 - On benches
 - Under benches
 - In aisles
 - On shoes
 - Equipment
 - Hose ends
Pathogen Sources

- Plants kept all year
 - Residents
- Stock “mother” plants
 - Vegetative propagation
 - Cuttings
 - Buds
 - Scion wood (grafting)
- New plant introductions
Pathogen Sources

- Water
- Air
- Insects
 - External carriers
 - Internal carriers
- Weeds
Pathogen Spread

- Water
 - Overhead irrigation
 - Splash
 - Recycled water
- Plant to Plant contact
- Air currents
- Vectors
 - Man
 - Equipment
 - Insects
Disease Management in an Organic System

- Ecologically sound.
- Encourage growth and diversity of soil and plant microorganisms (potential beneficials).
- Plant genetic diversity.
- Integration of disease management decisions with insect and weed management.
Disease Management Strategies

- Genetic Resistance
- Cultural Management
- Biological Management
- Chemical Management
 - Approved for organic production
The Key to Disease Management is *Prevention*!
Genetic Resistance

- Resistance – ability to suppress or retard the activity and progress of a pathogen (absence or reduction of symptoms)
- Tolerance – ability to endure severe disease without suffering significant losses in quality or yield (do not inhibit pathogen and symptoms may be present)
Genetic Resistance

- First line of defense.
- Must be continually monitored as pathogens will develop virulence to resistant and tolerant plant material.
- Look for cultivars well adapted to your conditions and with resistance to the most common diseases you face.
Genetic Resistance

- **Advantages:**
 - Non-disruptive to the environment
 - Compatible with other management strategies (fits well into IPM systems)

- **Disadvantages:**
 - Not available for all diseases on all crops
 - Pathogens may become virulent to tolerant varieties (over time)
 - Varieties resistant to one pathogen may be highly susceptible to another
Cultural Management Practices

- Exclusion
- Planting time
- Water management
- Fertilizer management
- Sanitation
- Insect and weed management
- Manipulation of the environment
Cultural Management Practices

- Exclusion – Keep pathogen sources out of the greenhouse.
 - Plant material – source plants, transplants, seed, etc.
 - Soil-less pasteurized potting media
 - Treat recycled water
 - Keep door closed and vents covered
Cultural Management Practices

- **Sanitation**
 - Removal and destruction of dead plants, diseased plants and plant debris (cull piles should be far away from production areas)
 - New or clean pots, trays, tools, etc.
 - Alcohols
 - Chlorine – residual must stray below 4 ppm (safe water drinking act)
 - Hydrogen peroxide
 - Soap-based algicide/demisters
 - New potting mix
 - Keep hose ends off the ground
 - Wash hands
 - Clean shoes
Cultural Management Practices

- Water Management – timing and duration of irrigations should satisfy crop needs without allowing excess water.
 - Reduce saturated soil conditions
 - Reduce leafwetness

- Fertilizer management – Grow plants at a moderate pace, reduce lush, succulent growth.
 - Help to reduce activity of pathogens by managing nitrogen.
Cultural Management Practices

- Insect and weed management
 - Screening vents and doorways
- Manipulation of the Environment
 - Temperature
 - Humidity
 - Air circulation
 - Shade
Biological Management

- Management of pathogens by other microorganisms.
- Biological control is constantly occurring in nature.
- Use may include rearing and releasing microorganisms or manipulating existing populations.
 - Disease-suppressive microorganisms
Disease Suppressive Microorganisms

- Fungi and bacteria can help to suppress diseases:
 - *Trichoderma*
 - *Streptomyces*
 - *Bacillus*
 - *Psuedomonas*
- Only a few strains are commercially available
- Bacteriophages - viruses of bacteria
Trichoderma

- Soil-borne fungus.
- Season long control of root diseases.
 - Colonizes the root system.
- Use on vegetables and ornamentals.
- Protects against Pythium, Rhizoctonia, and Fusarium and many others.
- Also used as a plant growth regulator.
- Rootshield® and Plantshield®
Streptomyces

- Soil-borne fungus
- Disease suppressing and disease causing strains (even in the same species).
- Suppresses activity of *Pythium*, *Fusarium* and *Phomopsis*.
- *Streptomyces griseoviridis* (Mycostop®):
 - Seed rot
 - Damping-off
 - Root rots
- **Greenhouse** vegetables and ornamentals
- Applied as a seed treatment, soil drench or through drip systems.
Bacillus

- Many species have strains that have been identified with the ability to suppress many fungi and bacteria
 - *Bacillus subtilis* (Serenade®)
 - *Bacillus pumilis* (Sonata®)
- Fruit and Vegetable crops, Ornamentals
- Broad spectrum of activity:
 - Mildews, molds, blights, leaf spots, rusts
Chemical Management

- Options limited in organic production systems.
 - Pest, crop, site (greenhouse)
 - Confirm use for organic production
- Timing is critical:
 - Preventative (prior to extensive infection)
- Application methods are critical:
 - Proper equipment
 - Spray volume
 - Plant coverage
Chemical Management

- Copper- and Sulfur-based fungicides
 - Advantages:
 - Inexpensive
 - Widely available
 - Minimal threat to environment
 - Disadvantages:
 - Phytotoxic at temperatures above 85 F.
 - Affect a wide range of fungal and bacterial pathogens; but disease controls varies depending on host and pathogen.
 - Overuse may result in development of pathogen resistance
Chemical Management

- **Oils and Plant Extracts / Natural Plant Products**
 - Some are compatible with organic production.
 - Reliable disease control has not been demonstrated.

- **Bicarbonate-based fungicides**
 - Used preventatively - acceptable levels of control against powdery mildews and a few other diseases.
 - Season-long disease control questionable.

- **Manure composts**
 - Some (not all) have been shown to induce disease resistance in some plants.
 - Variable batch to batch
Pesticide Precautions

- Pesticides are governed by EPA and the New Mexico Department of Agriculture.
 - Products must be registered by both
 - NM product registration: http://state.ceris.purdue.edu
 - Contact Cary Hamilton: chamilton@nmda.nmsu.edu

- Product label is a legal document:
 - Site of application: host and greenhouse approved
 - Disease/pathogen

- Product labels and registrations change frequently:
 - http://www.cdms.net
Greenhouse Diseases

- Fungi
 - Gray mold
 - Leaf mold
 - Powdery mildew
 - Downy mildew
 - Early blight
 - Root and crown rots
 - Pythium
 - Rhizoctonia
 - Fusarium

- Viruses
 - Tobacco Mosaic Virus
 - Tomato Spotted Wilt Virus / Impatiens Necrotic Spot Virus

- Bacteria
 - Bacterial leaf spot
Gray Mold

- *Botrytis cinerea* (fungus)
- Affects almost every type of greenhouse crop
- Symptoms:
 - Leaf spots
 - Flower spots and blight
 - Stem and crown rot
 - Damping-off
Gray Mold

- Sign:
 - Gray, dusty spores
Gray Mold

- Weak pathogen
 - Stressed tissue
 - Wounded tissue
 - Old tissue
- Flowers!
- Favored by:
 - High relative humidity (>85%)
 - Cool (65 F) temperature
 - Poor air circulation
 - Overcrowded conditions
Gray Mold on Tomato

- All above ground plant parts:
 - Leaves
 - Stems
 - Flowers and fruit
- Lesions expand eventually blighting (killing) affected tissue.
- Easily spread by air, water, tools, hands, and insects.
Gray Mold Management

- Manipulate greenhouse environment to make it less favorable for disease:
 - Reduce humidity (<85%) and leaf wetness
 - Increase air circulation
 - Reduce overcrowding and plant-to-plant contact
 - Prune out suckers below first fruit set
 - Periodically remove the bottom leaves (cut 1 inch from the stem and then snap off the stub at the next pruning)
 - Increase temperature (within tolerable range for the crop)

- Good sanitation practices
 - Cleaning tools and hands
 - Removal and destruction of debris

- Organic fungicides: Coppers, biofungicides and hydrogen dioxide.
Leaf Mold on Tomato

- *Fulvia (=Cladosporium) fulva* (fungus).
- Usually only a problem under highly humid conditions.
- Poor air circulation.
- Cool temperatures.
- Spreads by air, water, tools, hands, and insects.
Leaf Mold on Tomato

- Chlorotic spots on upper surface of older leaves.
- Olive-green spores on under leaf surface.
- Spots merge to affect the entire leaf.
- Usually only the foliage is affected.
- Older leaves are affected first.
Leaf Mold Management

- Use resistant varieties
- Other management - same as gray mold:
 - Sanitation
 - Manipulate the greenhouse environment
 - Hydrogen dioxide
 - Biofungicides
Powdery Mildew

- Common greenhouse disease
 - Tomatoes, peppers, ornamentals
- Rarely kill plants, reduces aesthetic value and salability
- Symptoms: chlorosis, necrosis, distortion
- Sign: white, powdery growth
Powdery Mildew on Peppers

- Begins are brown blisters on the top of the leaves.
- Fungus sporulates on the underside of the leaf.
Powdery Mildew on Peppers

- Severely affected leaves curl exposing fruit.
Powdery Mildew on Tomato

- Same fungus that infects peppers.
- Begins as irregular, bright yellow blotches.
- Mildew sporulates on leaf and stem surfaces.
- Infected leaves eventually die
Powdery Mildew

- Spreads by air currents, water splash, people and equipment.
- Requires high humidity for infection (near 100%).
- Disease develops under a wide range of humidity levels (>30%).
- Low light.
- Overcrowding.
Powdery Mildew Management

- Reduce Humidity
- Increase air circulation
- Preventative sprays
 - Sulfur
 - Biofungicides
 - Bicarbonate fungicides
 - Copper fungicides
Downy Mildew

- Cause foliar blight
- Common on: Vegetables and ornamentals (snapdragon, salvia, pansy, rose, geraniums).

- Symptoms:
 - Yellowing
 - Mottling
 - Purplish blotches
Downy Mildew

- Sign: Fluffy gray brown to purple growth on underside of the leaves
Downy Mildew

- Favored by cool, wet conditions with high relative humidity
- Leaf wetness is required for germination and infection
- Spread by splashing water and air
Downy Mildew Conditions and Management

- High Humidity
- Leaf wetness
- Low light
- Overcrowding

- Reduce humidity
- Increase air circulation
- Increase light
- Reduce overcrowding
Early Blight

- Caused by two species of *Alternaria*.
- A serious disease on greenhouse tomatoes.
- Soil- and seed-borne.
- All above ground plant parts are affected.
- Disease starts on the lower leaves.
Early Blight

- Small, circular spots often with a dark margin or yellow halo.
- Spots enlarge and develop a target appearance (concentric rings).
- Stem lesions are elongated and enlarge to girdle the stem.
Early Blight

- Fruit may rot at the stem end.
Early Blight Conditions

- Temperatures between 47 and 90 F.
- Leaf wetness
- High humidity
- Overcrowding
- Spread by air currents and water splash
Early Blight Management

- Resistant cultivars
- Sanitation
- Reduce humidity
- Increase air circulation
- Seed treatment (same as bacterial leaf spot)
- Organically approved chemicals
Tobacco Mosaic Virus (TMV)

- RNA surrounded by a coat protein
- Highly infectious
- Sap transmitted: hands, tools, plant-to-plant contact
- Common disease on many greenhouse plants
Tobacco Mosaic Virus

- Common disease on many greenhouse plants
- Symptoms include: mosaic, mottling, chlorosis, necrosis, leaf curl, formation of bumps and other deformities, stunting, color breaking, uneven ripening.
Tobacco Mosaic Virus Management

- **Sanitation!**
 - Destroy infected plants
 - Wash hands
 - Wash clothing
 - Clean tools

- Do not allow smoking in or around plants.
Tomato Spotted Wilt Virus

- RNA virus
- Transmitted primarily by thrips
 - Cuttings
- Huge host range
Tomato Spotted Wilt Virus

Symptoms:
- Spots and rings
- Necrosis
- Streaking
- Stunting
- Wilted appearance
- Uneven ripening
Tomato Spotted Wilt Virus
Tomato Spotted Wilt Virus
Bacterial Leaf Spot

- Caused by *Xanthomonas campestris pv. vesicatoria*.
- Primary hosts:
 - Peppers
 - Tomatoes
- Generally on leaves
- May occur on stems or fruit
Bacterial Leaf Spot on tomato
Bacterial Leaf Spot

- Bacterium is seed-borne!
 - On and in seed.
- Favored by temperatures between 75-86 F and high humidity and leaf wetness.
- Spread by air currents, water splash, and people
Bacterial Leaf Spot Management
Prevention

- Start with clean seed and transplants!
Bacterial Leaf Spot Management
Seed treatments

- Clorox seed treatment (EPA Reg. No. 5813-1):
 - Dose: 2 pts 5.25% sodium hypochlorite / 8 pts. Water
 - Use 1 gallon of solution per pound of seed
 - Wash with continuous agitation for 40 mins.
 - Promptly air dry
 - Prepare fresh solution for each batch of seed

- Only kills bacteria on the outside of the seed.
Bacterial Leaf Spot Management

Seed treatments

- **Hot water treatment**
 - 122 F for 25 minutes (check temp. constantly)
 - Continuous agitation
 - After treatment, cool seed under tap water
 - Promptly air dry at room temperature (70-75 F)

- **Kills bacteria on the outside and on the inside of the seed.**

- **Can reduce germination if temperature is too hot.**
Bacterial Leaf Spot Management

- Avoid overhead irrigation
- Reduce humidity (increase air circulation)
- Sanitation
- Organically improved chemicals
 - Copper fungicides
 - Hydrogen dioxide
 - Biofungicides
Bacterial Leaf Spot Management

- Bacteriophage (AgriPhage):
 - Virus specific to particular strains of *Xanthomonas campestris* pv. *vesicatoria*.
 - Identification of strain is required – tests conducted by the manufacturer.
 - Adequate control may require frequent applications.
Disease Management
Summary

- Integrated pest management
 - Good scouting – early detection
- Resistant varieties
- Sanitation:
 - Routine and “year-end” cleanup
 - Remove diseased leaves, fallen leaves and flowers, etc.
 - Removal of diseased and dead plants
 - Clean tools
 - Clean hands
 - Clean pots, flats, benches, etc.
 - “Sterilize” soil – heat (dry or steam), solarization
Disease Management Summary

- Isolation of new plants (Quarantine)
- Improve greenhouse environment:
 - Reduce relative humidity – increase air flow
 - Reduce overcrowded conditions
 - Alter cultural practices
- Control weeds and insects inside and outside the greenhouse
- Chemical control
 - Biopesticides
 - “Regular” chemicals