Coping with Climate Change in Vegetable Production Systems

Dr. Stephanie Walker
Extension Vegetable Specialist
Vegetable Production in NM

- Challenges in the Southwest US include:
- Areas at higher elevations have a shorter growing season
- Areas at lower elevations have limited and unpredictable rain events – supplemental irrigation usually needed
The Ancient Ones: Anasazi

- Vegetable production has a long history in the Southwest
- Ancient Native Americans developed many strategies to cope with challenging conditions

https://en.wikipedia.org/wiki/Ancestral_Puebloans
Cooperative Extension Service
Early Southwest Agriculture

• Irrigation canals, dams, diversions constructed by northern NM Pueblos
• Trincheras (trenches) built to collect water, reduce erosion, prevent frost damage
• Floodplain planting
Early Southwest Agriculture

• At Chaco Canyon, rainwater runoff was collected from mesas where it was channeled to fields to produce crops
• Crop selection – seed was saved from plants that survived and matured under the challenging conditions

https://en.wikipedia.org/wiki/Agriculture_in_the_prehistoric_Southwest
Key Concepts

• Global warming is on-going

• Impact on Southwest US based on historic trends = warmer & drier
Impacts to Vegetable Production (+)

• Milder winters with longer frost-free seasons
• Longer growing season
• Higher carbon dioxide (CO₂) levels benefit growth of some plants
• Crop specific benefits (ex. Higher quality red chile; prolonged harvests of melons, tomatoes)
Impacts to Vegetable Production (-)

- Increased periods of severe heat
- Increased disease and pest pressure
- Increasing periods of drought along with scarcity of irrigation water
- Increased rate of soil and water salinization
- Increased extreme weather events (hail, torrential rainfall)
How Can We Cope?

• Know our specific challenges
• Develop strategies to address our situations
 - Implement best production practices
 - Irrigation and infrastructure planning
 - Variety selection and crop diversity
Coping with Climate Change

BEST PRODUCTION PRACTICES
Know Your Vegetable Plants

• Many vegetables expire at cold temps; some suffer at high temps

• Plant vegetables for growth during their preferred temperature

• Warm Season vs. Cool Season Vegetables
Warm vs. Cool Season Crops

• **Warm season crops:**
 - Injured or killed by frost
 - May stop setting fruit at high temperatures (>95°F)

 – Squash, melons, tomatoes, eggplant, okra, cucumber, beans, chile, bell peppers
Warm vs. Cool Season Crops

• **Cool season crops:**
 - Tolerate (or are improved) by frost
 - Growth slows at very low temperatures

• Broccoli, carrots, spinach, lettuce, Swiss chard, kale, onions, beets, radishes
Prepare Soil to Maintain Moisture

• Best soil is deep, well drained & contains plenty of organic matter
• Organic matter holds soil moisture
 Example: Sponge vs. Gravel
Know your soil

• Soil type affects frequency and duration of watering
• Most soil in NM is very low in organic matter
• Increasing organic matter greatly increases moisture holding capacity of soil
• To increase:
 - Add compost and manure
 - Use organic mulch
Compost

• Benefits of compost
 – Organic matter
 – Aeration
 – Soil moisture
• Make your own compost
• Compost must reach 130°F for approx. 7 days

http://www.aggregatepros.com/images/Compost_Heap_lg.jpg
Compost

• Ingredients
 – Leaves, manure, yard clippings, food scraps

• Turn often

• Keep moist, not wet

• Don’t add
 – Meat, dairy, slow decomposing items
Compost

• When to add
 – Pre planting
 – Post planting

• How to add
 – Till in
 – Mulch

http://www2.grist.org/images/advice/how/2008/08/19/shovel-o-compost_h528.jpg
Coping with Climate Change

IRRIGATION
The vast majority of vegetable crops grown in New Mexico will require some supplemental irrigation. Controlled application can aid in vegetable management for drought tolerance.
Water Harvesting

• Gray Water: Example: Place bucket in shower to catch water while it’s heating

• Rainwater Harvesting: Depending on size of collection area, even small rain events can provide helpful quantities of irrigation water
Water

- Too much water can also stress or kill plants
- Water-saturated soil can ‘smother’ roots
- Many soil borne diseases thrive in overly wet soil
 - Dig down to roots to check moisture
Water Requirements Through the Season

- Know your plants, including critical windows for optimal watering
- Germination and transplant establishment periods are always critical
- Critical water stage for most vegetables is while consumable part is growing
- ‘Fruiting’ vegetables (tomato, chile peppers, melons) is at flowering and fruit set
Disorders: Blossom End Rot

• Caused by Calcium (Ca) deficiency at growing point in fruit
• Drought stress during fruit set prevents transportation of Calcium
Encourage Deep Root Growth

• The deeper the roots, the better a plant can hold up to drought stress
• Less frequent, deep watering encourages
• Water slowly to let moisture percolate
• Some vegetables naturally have shallow roots so wouldn’t benefit: Onions, Lettuce
• Deep rooted vegetables include: Asparagus, Squash, Tomatoes
Deliver Water Directly to the Roots

• Sprinklers and flood irrigation are *less* efficient

• Drip irrigation and soaker hoses are *more* efficient

• Water in early morning or evening to minimize evaporation
Olla Irrigation

• Use of unglazed, terra cotta pots filled with water and buried next to growing plants
• Ollas are fitted with caps to reduce evaporation
• Ollas are refilled when needed & maintained at least 50% full

Coping with Climate Change

MODIFY THE GROWING ENVIRONMENT
Basic Tools for Cold Weather Protection

- Microenvironments
- Mulch
- Cloches
- Row Covers
More Advanced

• Cold frames
• Hoop houses
• Greenhouses
Microenvironments

• Spaces in your yard or garden that are protected from cold winds and weather
• Sheltered spots that create a buffer in temperature
 – Against a house
 – Between two buildings
 – Beside a wall
 – Between taller, larger plants
Mulch

- Material placed on soil surface around vegetable plants
- Organic mulch helps increase soil organic matter
- Be careful to not introduce weed seed
Mulch

• Types
 – Straw, leaves, wood chips, newspaper, plastic, pecan shells, compost

• How to apply
 – Once plants are established, cover ground 2 – 4 inches
 – Water to help settle
 – Don’t cover vegetable plants
Mulching

• Pros
 – Keeps weeds at bay
 – Conserves soil moisture
 – Warms/cools soil temp

• Cons
 – Could harbor pests
 – Labor and cost investment
 – Warms/cool soil temp

http://thailand.ipminfo.org/images/components/Organic_farm_egg_plant_mulching_3.JPG
Lithic Mulch

- Use of pebbles, or other stone-type materials
- Used in Galisteo Basin of NM by early Native American farmers
- Useful in dry, desert environments
- Reduces water evaporation,
- Reduces soil erosion
- Increases water infiltration
- Increases soil temperature
Cloches

Cloches (rhymes with slosh)

- Provide protection to small, tender plants from frost, wind, and rain
- Wall-of-water, soda bottles, milk jugs, and food containers
- Remove or open when temperature rises
- While getting a head start on your garden you are saving these items from the landfill!

http://justsopress.typepad.com/garden_klog/images/2008/05/08/080502_008.jpg
Row Covers

• Provides some protection against freezing temperatures (about 4-6°F boost)
• Hoop supported vs. floating
• Perforated polyethylene vs. spun bonded polyester or polypropylene
• Water permeable
• Air permeable
• Remove or open when temperature rises
Cold Frames

- Protects from early frosts
- Good place to start germination of hardy seeds
- Cool season vegetables will thrive within, even with freezing temperatures outside
- Safe place to start transplants being hardened off
- Easy to construct
Hoop Houses

• Meets the needs of small farmers and gardeners
• Relatively inexpensive to construct
• Must be opened and closed to maintain optimum temperatures for plants growing inside
Cold & Hot Weather Protection - Greenhouses

- Protected space for year round vegetable production
- Sturdy and permanent against wind, snow, and rain
- High cost and labor investment
- High maintenance

http://www.igcusa.com/Hobby/bc/BC-capecod-large.jpg
Hot Weather Protection

• Shading using structures or companion plants
Coping with Climate Change

COMPANION PLANTING
Companion Planting Concepts…

• Plants have predictable strengths and weaknesses when grown in set environments
 - Physical structure
 - Root growth
 - Phytochemical production
 - Susceptibility or resistance to diseases
 - Relative attraction to pests

• **Certain plants can benefit - or harm - others when placed in close proximity in the garden**
1) Trap Cropping

- A companion plant is used to attract pests away from the main plant
- Examples: Collards more attractive to diamond back moth; used to protect cabbage Hubbard squash most attractive for squash bugs
- Be careful to not attract *more* pests to your garden
2) Symbiotic Nitrogen Fixation

• Nitrogen fixing crops are used to boost available N to a main crop
• Example: Use of legumes as companion crop
• Keep in mind-- most of the N fixed by the legume will be used by the legume; limited amounts will be available to the main crop
3) Biochemical Pest Suppression

• Some plants exude phytochemicals that suppress or repel pests or diseases; neighboring plants may also benefit

• Example:
 - Rye residue suppresses germination of weeds; transplanted tomatoes, broccoli do fine
4) Physical Spatial Interactions

- Pair tall, sun-loving plants with low growing shade to best optimize space
- Corn plants are believed to disorient adult squash vine borers; prickly squash vines may discourage vertebrate pests from dining on the corn
- Example: ‘The Three Sisters’
The Three Sisters

- Corn, Beans, and Squash benefit each other when planted closely together
- Corn provides support for beans
- Beans (legume) provide nitrogen to soil
- Squash leaves keep weeds suppressed
Zuni Waffle Garden

• Waffles are approx. 12’ x 12’
• Each individual square is indented and surrounded by a high rim
• Sunflowers are often planted along the edges
• Allows maximum water efficiency in arid, southwest climate
5) Nurse Cropping

• Tall or dense-canopied plants may provide protection to delicate companion plants.

• Oats have long been used to prevent weed growth and allow for establishment of alfalfa or other forage crops.
6) Beneficial Habitats

• A companion plant provides a desirable habitat for beneficial insects and other arthropods
7) Security Through Diversity

- ‘Not putting all your eggs in one basket’
- Univ. of Cal. research demonstrated that mixing of broccoli cultivars can reduce aphid pressure

- *Excellent insurance against total crop failure during challenging climatic conditions!*
Intercropping

- Plant two or more crops in the same space
- Avoid wasting ‘unused’ space
- Take advantage of difference in growth rate; harvest quick maturing crop while slower maturing crop is still growing to full size
 - Carrots and radishes
 - Cabbage and lettuce

Crop Diversity

• Monoculture versus polyculture
• Monoculture is especially risky in times of uncertain growing conditions
• Diversity minimizes losses during adverse conditions
Coping with Climate Change

WATER-WISE VEGETABLES
Consumptive Use of Water

• Irrigation requirements impacted by:
 - Type of vegetable
 - Growth stage of plant
 - Time to harvest
 - Environmental conditions
Reduce Time to Harvest

• Look for quick maturing vegetable varieties, including determinate, bush type vegetables

• Start with transplants
Transplants – Potential Benefits

- Can be used to obtain earlier maturity
- Reduce the time plants are exposed to adverse field conditions
- Reduce overall water use
- Helps stand establishment (older seedlings better able to withstand many early season diseases and pests)
Transplants

• Start 4 - 8 weeks before planting outside
• Plant seed in clean potting soil and planting containers
• Provide ample light and warmth for best results
• Harden off seedling before planting outside
• Some vegetable crops are not suited for transplanting
Selecting the Vegetable and Cultivar

- Know your vegetables
- Determinate vs. indeterminate
- Days to maturity
Tomato Cultivars

• Drought-tolerant varieties:
 - Pineapple
 - Yellow Pear

• Look for early maturing varieties

• Tomatoes
 - ‘Early Girl’ 52 days
 - ‘Better Boy’ 75 days
 - ‘Zapotec’ 80 days
Additional Thoughts on Cultivar Selection…

• Different cultivars of the same type of vegetable exhibit different tolerance to hot and cold temperatures
• Look for guidance in seed catalogs, from fellow gardeners, as well as your own experience
Low Water-Use Vegetable Crops

- Tepary Beans
- Black-eyed Peas (Cowpeas)
- Okra
- Asparagus
- Squash (some varieties)
Tepary Beans (*Phaseolus acutifolius*)

- From the Papago Indian phrase “t’pawi”, meaning “it’s a bean”
- Small beans in a wide variety of colors (black, white, brown, mottled)

[Image of Tepary Beans](http://commons.wikimedia.org/wiki/Category:Phaseolus_acutifolius)
Tepary Beans

- Native to the American Southwest where they’ve been a staple crop for thousands of years
- Tepary beans were planted in flooded arroyo; with no additional irrigation, harvest was ready in about two months
Cowpeas (*Vigna unguiculata*)

- Originated in Africa
- Need little water to grow; grow poorly if watered too much
- Thrive in high heat

[Image of cowpeas]

http://www.rareseeds.com/store/vegetables/cowpeas/

Baker Creek Heirloom Seeds
Cowpeas

- Black-eyed peas, as well as many other types
- Immature beans can be eaten like green snap beans
- Most produce long vines; allow 3-5’ between rows

http://en.wikipedia.org/wiki/Black-eyed_pea
Okra \textit{(Abelmoschus esculentus)}

- Member of the mallow family (Malvaceae), closely related to hibiscus and cotton
- Origins in northern Africa
- Grown for their immature pods
- Known for glutinous consistency (gumbo)

http://www.graphicpenguin.com
Okra Planting

• Okra plants prefer humidity and heat
• Well-drained, fertile soil is optimum
• Intolerant of prolonged wet soil
 -Plant in areas with good drainage
• Plant when soil is warm (> 60°F)
Okra Harvest

- Harvest pods when less than 4” (2-3” optimum); larger pods are tough & bitter
- Harvest every other day (4-6 days after flowering)
- Wear gloves & long sleeves when harvesting
- ‘Clemson Spineless’: 56 days to harvest
Asparagus (Asparagus officinalis)

- Tolerant of heat, drought and salinity
- Perennial; productive for many years
- Dioecious
 - male and female plants
- Modern varieties all male for higher yield

http://en.wikipedia.org/wiki/Asparagus
Asparagus

- Wild asparagus near the Rio Grande
Asparagus Culture

• Start from crowns
• Don’t harvest 1st year
• Stop harvesting
 – spears are less than diameter of a pencil
• Allow ferns to develop to feed the plants
Asparagus Varieties

• Open-pollinated varieties:
 ‘Mary Washington’
 ‘Martha Washington’

• Hybrid, all-male varieties:
 ‘Jersey Giant’
 ‘Jersey Knight’
 ‘Purple Passion’

www.parkseed.com
Squash (*Cucurbita* species)

- Four species: *C. pepo*, *C. maxima*, *C. moschata*, *C. argyrosperma*
- One of the staple crops of Native American in the Southwest
- Some varieties are particularly drought tolerant
Squash: *Cucurbita argyroserperma*

- *C. argyroserperma*: Includes ‘Cushaw’, many of the best tasting pumpkins and squash
 - Requires a long, warm growing season
 - Many are grown for their edible seeds

- *C. argyroserperma* varieties:
 ‘Tennessee Sweet Potato’, ‘Hopi Cushaw’
Squash: *Cucurbita moschata*

- *C. moschata*: Includes the butternut and “cheese pumpkins”

- *C. moschata* varieties: ‘Waltham Butternut’, ‘Long Island Cheese’
‘Seminole Pumpkin’ \((C. \text{moschata})\)

- Cultivated by the Seminole Indians in Florida
- Large, spreading vines
- Fruit with long shelf-life

http://www.southernexposure.com
Squash: *Cucurbita maxima*

- *C. maxima*: Includes many of the winter squash
- *C. maxima* varieties: Kabocha, Buttercup, Hubbard
Red Kuri Squash (*C. maxima*)

- Also called ‘Baby Red Hubbard’
- Thick-skinned, orange colored, winter squash
- Delicate, chestnut-like flavor
- Drought tolerant

Squash: *Cucurbita pepo*

- *C. pepo*: Includes most of the summer squash, and small to medium-sized ornamental pumpkins

- *C. pepo* varieties: Zucchini, Spaghetti, Acorn, Delicata
Summer Squash

- Zucchini (*C. pepo*) cultivar ‘Dark Star’ - bred for deep, penetrating roots for drought tolerance

http://www.seedsofchange.com
Coping with Climate Change

PROTECT BIODIVERSITY
Seed Saving

• Ancient art practiced by humans since the dawn of agriculture
• Prior to WWII, gardeners had to save seed
• With rise of commercial seed industry, the art of seed saving declined
• Increasing interest in heirlooms, seed libraries and locally adapted varieties creating resurgence
Reasons to Save Seeds

• Reproduce cultivars that do well in your area
• Ensure long-term survival of excellent cultivars
In Summary, Coping With Climate Change in Vegetable Production:

- Improve soil health
- Use water resources efficiently
- Modify the growing environment through season extension techniques & shading
- Practice correct seed saving techniques
In Summary, Coping With Climate Change in Vegetable Production:

- Diversify your crop mix
- Experiment & keep records
- Know the unique conditions of your farm or garden and plan for flexibility
Thank You!