Innovative Low Cost, Low Head Hydropower for Irrigation Canals

Esslinger, Libbin, Cadena

Presented by Zack Libbin
August 07, 2012
Location of EBID
Features of EBID
Elevations of Features

Total drop of 430 ft
Conventional Hydropower

- Largest renewable energy source in the United States
- In 2011: 6% total US energy production, 63% of renewable generation

Source: www.eia.gov “Energy Explained - Hydropower Explained”

Net Generation from Hydroelectric Power

<table>
<thead>
<tr>
<th>State</th>
<th>2010</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Mexico</td>
<td>253</td>
<td>271</td>
</tr>
<tr>
<td>Texas</td>
<td>1,032</td>
<td>1,029</td>
</tr>
<tr>
<td>Arizona</td>
<td>6,626</td>
<td>6,427</td>
</tr>
<tr>
<td>Colorado</td>
<td>1,746</td>
<td>1,886</td>
</tr>
<tr>
<td>US Total</td>
<td>257,053</td>
<td>273,445</td>
</tr>
</tbody>
</table>

(Thousand Megawatthours)

Hydroelectric Application Opportunity For Irrigation Conveyance

Diversion/Conveyance

Rio Grande

Canal

5.0’-10.0’ Available Head

10.0’-12.0’ Available Head

Drain

Canal to Drain

Hydropower Application
Turbine Cost per 50kW

<table>
<thead>
<tr>
<th>Hydraulic Device</th>
<th>Minimum Cost</th>
<th>Maximum Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufactured turbine</td>
<td>$120,000</td>
<td>$450,000</td>
</tr>
<tr>
<td>Manufactured high flow Pump As Turbine</td>
<td>$50,500</td>
<td>$200,000</td>
</tr>
<tr>
<td>EBID fabrication and design</td>
<td>$15,000</td>
<td>$55,000</td>
</tr>
</tbody>
</table>
Projections

Potential Power in District

Total Power (kW)

Power per unit (kW)

- 20 Sites
- 50 Sites
- 100 Sites
Grants for R&D of Turbine

Drop 8
- New Mexico Energy, Minerals and Natural Resources Department, EMNDRD
- Cost share with EBID
- R&D by EBID, NMSU College of Engineering
- $265,000 total, cut short
- Produce and commission 50kW at Drop 8 site

Wasteway 5
- USDA NRCS Conservation Innovation Grant
- 50% cost share with EBID
- Design and Fabrication by EBID
- $150,000 total funding
- Produce electricity to provide pressurized water to Porter Farms drip system
Drop 8
EBID’s First Low Cost Hydropower
Site Location Drop 8

- Hydropower and replacement check structure built upstream of historical drum structure
- Elevation drop of 8 feet
- Consistent average flow rate of 300 cfs
- Ample room for dry well
- Historical structure preserved
Site Location Drop 8
Arial view of site 7/2009
Site Location Drop 8

Site Requirements

- Head of at least 7 feet
- Significant flow rate
- Area for dry well
- Proximity to electric grid or use for power

Drop 8 on the Westside Canal

- Elevation drop of 8 feet
- Flow rate of 300 cfs
- Ample room for dry well
- Grid and pole within 150 ft
Construction of Drop 8

Upstream Drain

Downstream Drain

Start water level

8 ft

End water level

12/2008 12/2008
Construction of Drop 8

Finished structures
Construction of Drop 8

Grating of dry well

Spiral staircase
Construction of Drop 8

Finished structures 3/2009
Construction Costs of Drop 8

<table>
<thead>
<tr>
<th>Component</th>
<th>Material Cost</th>
<th>Labor/Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check Structure</td>
<td>$50,000</td>
<td>In-kind</td>
</tr>
<tr>
<td>Dry Well</td>
<td>$15,000</td>
<td>In-kind</td>
</tr>
<tr>
<td>Drain Pipe</td>
<td>$5,000</td>
<td>In-kind</td>
</tr>
<tr>
<td>Total Cost</td>
<td>$70,000</td>
<td>In-kind</td>
</tr>
</tbody>
</table>
Drop 8 Prototypes, Transformations, and Progress
Turbine 1

- 36” paddle wheel encased
- 8 blades
- 2” shaft
- Teardrop inlet

Installed with 24” Manifold 3/2009
Turbine 2

Layout 5/2009

Turbine 1 and 2 5/2009
Turbine 3

- Axial flow
- 15” three blade impeller
- 1.5” shaft

24” to 16” 8/2009
Turbine 4

- Axial flow
- 24” throughout system
- 23” five blade fixed pitch Kaplan style impellor
- All fabricated at EBID
- Chain and sprocket drive
Turbine 4

Below: Complete 24” system

Right: Chain and sprocket drive